Luzin and Sierpiński sets meet trees

Marcin Michalski, based on joint work with R. Rałowski & Sz. Żeberski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2018, section Set Theory and Topology 01.02.2018, Hejnice

글 > : < 글 >

Definition

Let $T \subseteq \omega^{<\omega}$ be a tree. Then

• for each $\tau \in T$ succ $(\tau) = \{n \in \omega : \tau^{\frown} n \in T\};$

•
$$split(T) = \{\tau \in T : |succ(\tau)| \ge 2\};$$

•
$$\omega$$
-split $(T) = \{ \tau \in T : |succ(\tau)| = \aleph_0 \}.$

• stem $(T) \in T$ is a node τ such that for each $\sigma \subsetneq \tau |\operatorname{succ}(\sigma)| = 1$ and $|\operatorname{succ}(\tau)| > 1$.

□ > * ミ > * ミ > ・ ミ ・ の < (~

Definition

A tree T on ω is called

- a Sacks tree or perfect tree, denoted by T ∈ S, if for each node σ ∈ T there is τ ∈ T such that σ ⊆ τ and |succ(τ)| ≥ 2;
- a Miller tree or superperfect tree, denoted by T ∈ M, if for each node σ ∈ T exists τ ∈ T such that σ ⊆ τ and |succ(τ)| = ℵ₀;
- a Laver tree, denoted by T ∈ L, if for each node τ ⊇ stem(T) we have |succ(τ)| = ℵ₀;
- a complete Laver tree, denoted by T ∈ CL, if T is Laver and stem(T) = ∅;

Definition (tree ideal t_0)

Let $\mathbb T$ be a family of trees. We say that a set X belongs to the tree ideal t_0 if

 $(\forall T \in \mathbb{T})(\exists T' \in \mathbb{T})(T' \subseteq T \& [T'] \cap X = \emptyset)$

Let $h: \omega^{\omega} \to \mathbb{R} \setminus \mathbb{Q}$ be a homeomorphism between the Baire space and the space of irrational numbers.

Definition (tree ideal t_0 - customization for \mathbb{R})

Let $\mathbb T$ be a family of trees. We say that a set $X\subseteq \mathbb R$ belongs to the tree ideal t_0 if

$$(\forall T \in \mathbb{T})(\exists T' \in \mathbb{T})(T' \subseteq T \& h[[T']] \cap X = \emptyset)$$

The classic example is Marczewski ideal ${\it s}_0$ for the family of perfect trees $\mathbb{S}.$

We will denote "Miller null" ideal by m_0 , "Laver null" by l_0 and

"complete Laver null" by cl_0 .

For convenience purposes we will assume that bodies of trees already lie in $\ensuremath{\mathbb{R}}.$

白 と く ヨ と く ヨ と …

Let \mathcal{I} be an ideal in a Polish space X

Definition

We call a set L I-Luzin set if $|L \cap A| < |L|$ for every set $A \in I$.

For classic ideals of Lebesgue null sets $\mathcal N$ and meager sets $\mathcal M$ we call $\mathcal N\text{-Luzin}$ sets generalized Sierpiński sets and $\mathcal M\text{-Luzin}$ sets generalized Luzin sets.

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Lemma

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

A B A A B A

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

御 と く ヨ と く ヨ と …

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

• Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).

同 ト イヨ ト イヨ ト ・ ヨ ・ ・ ク ヘ ()・

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

- Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).
- Let us say that at the step n + 1 we have a tree T_n and a set of nodes

$$B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}.$$

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

- Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).
- Let us say that at the step n + 1 we have a tree T_n and a set of nodes

$$B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}.$$

Let us extend the latter to

$$B_{n+1} = \{\tau_{\sigma} : \sigma \in (n+1)^{\leq n+1}\},\$$

so that $\tau_{\sigma} \subsetneq \tau_{\sigma^{\frown} k}$ for $\sigma \in (n+1)^{\leq n}$ and $\tau_{\sigma} \in \omega$ -split (T_n) for $\sigma \in (n+1)^{\leq n+1}$.

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

- Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).
- Let us say that at the step n + 1 we have a tree T_n and a set of nodes

$$B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}.$$

Let us extend the latter to

$$B_{n+1} = \{\tau_{\sigma} : \sigma \in (n+1)^{\leq n+1}\},\$$

so that $\tau_{\sigma} \subsetneq \tau_{\sigma^{\frown} k}$ for $\sigma \in (n+1)^{\leq n}$ and $\tau_{\sigma} \in \omega$ -split (T_n) for $\sigma \in (n+1)^{\leq n+1}$. Then set a Miller tree $T_{n+1} \subseteq T_n$ such that nodes from B_{n+1} are still infinitely splitting.

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

- Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).
- Let us say that at the step n + 1 we have a tree T_n and a set of nodes

$$B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}.$$

Let us extend the latter to

$$B_{n+1} = \{\tau_{\sigma} : \sigma \in (n+1)^{\leq n+1}\},\$$

so that $\tau_{\sigma} \subsetneq \tau_{\sigma^{\frown} k}$ for $\sigma \in (n+1)^{\leq n}$ and $\tau_{\sigma} \in \omega$ -split (T_n) for $\sigma \in (n+1)^{\leq n+1}$. Then set a Miller tree $T_{n+1} \subseteq T_n$ such that nodes from B_{n+1} are still infinitely splitting.

• Let
$$T' = \bigcap_{n \in \omega} T_n$$
. Since $\bigcup_{n \in \omega} B_n \subseteq T'$, T' is a Miller tree.

Let's consider some specific kind of *fusion* for Miller and Laver trees. Let T be a Miller tree.

- Set $\tau_{\emptyset} \in \omega$ -split(T), $B_0 = \{\tau_{\emptyset}\}$ and let $T_0 \subseteq T$ be a Miller tree for which $\tau_{\emptyset} \in \omega$ -split(T_0).
- Let us say that at the step n + 1 we have a tree T_n and a set of nodes

$$B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}.$$

Let us extend the latter to

$$B_{n+1} = \{\tau_{\sigma} : \sigma \in (n+1)^{\leq n+1}\},\$$

so that $\tau_{\sigma} \subsetneq \tau_{\sigma^{\frown} k}$ for $\sigma \in (n+1)^{\leq n}$ and $\tau_{\sigma} \in \omega$ -split (T_n) for $\sigma \in (n+1)^{\leq n+1}$. Then set a Miller tree $T_{n+1} \subseteq T_n$ such that nodes from B_{n+1} are still infinitely splitting.

- Let $T' = \bigcap_{n \in \omega} T_n$. Since $\bigcup_{n \in \omega} B_n \subseteq T'$, T' is a Miller tree.
- Analogously we do fusion in the case of Laver trees.

For every sequence of intervals $(I_n)_{n \in \omega}$ and a Miller (resp. Laver) tree T there is a Miller (resp. Laver) fusion sequence $(T_n)_{n \in \omega}$ such that for all n > 0:

 $\lambda([T_n] + I_n) < (1 + \sum_{k=0}^{n-1} (n-1)^k)\lambda(I_n).$

For every sequence of intervals $(I_n)_{n \in \omega}$ and a Miller (resp. Laver) tree T there is a Miller (resp. Laver) fusion sequence $(T_n)_{n \in \omega}$ such that for all n > 0:

$$\lambda([T_n] + I_n) < (1 + \sum_{k=0}^{n-1} (n-1)^k)\lambda(I_n).$$

Proof (idea of).

By fusion and the fact that we always may find arbitrarily short interval which will cover infinitely many nodes (clopens generated on them) of a given split.

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

向 ト イヨ ト イヨ ト

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

Proof.

• $\mathbb{Q} = \{q_n : n \in \omega\}$ and let I_n 's be intervals with centers q_n 's with $\lambda(I_n) < \frac{1}{(n)^{n-1}2^n}$.

▲□ → ▲ □ → ▲ □ → …

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

Proof.

- $\mathbb{Q} = \{q_n : n \in \omega\}$ and let I_n 's be intervals with centers q_n 's with $\lambda(I_n) < \frac{1}{(n)^{n-1}2^n}$.
- Let T be a Miller tree and (T_n)_{n∈ω} be a fusion sequence for T and intervals I_n's as in the previous Lemma.

・ 同 ト ・ ヨ ト ・ ヨ ト …

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

Proof.

- $\mathbb{Q} = \{q_n : n \in \omega\}$ and let I_n 's be intervals with centers q_n 's with $\lambda(I_n) < \frac{1}{(n)^{n-1}2^n}$.
- Let T be a Miller tree and (T_n)_{n∈ω} be a fusion sequence for T and intervals I_n's as in the previous Lemma.
- Then for each *n* we have $\lambda([T_n] + I_n) < \frac{1}{2^n}$ and we can put $T' = \bigcap_{n \in \omega} T_n$ instead of T_n .

・ 同 ト ・ ヨ ト ・ ヨ ト …

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

Proof.

- $\mathbb{Q} = \{q_n : n \in \omega\}$ and let I_n 's be intervals with centers q_n 's with $\lambda(I_n) < \frac{1}{(n)^{n-1}2^n}$.
- Let T be a Miller tree and (T_n)_{n∈ω} be a fusion sequence for T and intervals I_n's as in the previous Lemma.
- Then for each *n* we have $\lambda([T_n] + I_n) < \frac{1}{2^n}$ and we can put $T' = \bigcap_{n \in \omega} T_n$ instead of T_n .
- Hence $\lambda(\bigcup_{k>n} I_k + [T']) \leq \sum_{k>n} \lambda([T'] + I_k) \leq \sum_{k>n} \frac{1}{2^k} = \frac{1}{2^n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

There exists a dense G_{δ} set G such that for every Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree T' such that $G + [T'] \in \mathcal{N}$

Proof.

- $\mathbb{Q} = \{q_n : n \in \omega\}$ and let I_n 's be intervals with centers q_n 's with $\lambda(I_n) < \frac{1}{(n)^{n-1}2^n}$.
- Let T be a Miller tree and (T_n)_{n∈ω} be a fusion sequence for T and intervals I_n's as in the previous Lemma.
- Then for each *n* we have $\lambda([T_n] + I_n) < \frac{1}{2^n}$ and we can put $T' = \bigcap_{n \in \omega} T_n$ instead of T_n .
- Hence $\lambda(\bigcup_{k>n} I_k + [T']) \leq \sum_{k>n} \lambda([T'] + I_k) \leq \sum_{k>n} \frac{1}{2^k} = \frac{1}{2^n}$.
- So for $G = \bigcap_{n \in \omega} \bigcup_{k > n} I_k$ we have $\lambda(G + [T']) \leq \lim_{n \to \infty} \frac{1}{2^n} = 0$.

(人間) (人) (人) (人) (人) (人)

э

Theorem (Essentially Rothberger)

Assume that generalized Luzin set L and generalized Sierpiński set S exist. Then, if $\kappa = \max\{|L|, |S|\}$ is a regular cardinal, $|L| = |S| = \kappa$.

通 と く ヨ と く ヨ と

Theorem (M., Rałowski, Żeberski 2017)

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Theorem (M., Rałowski, Żeberski 2017)

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Proof.

 Let L be a generalized Luzin set and S generalized Sierpiński set. If |L+S| < c then there is nothing to prove. Otherwise |L| = |S| = c by regularity of c.

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Proof.

- Let L be a generalized Luzin set and S generalized Sierpiński set. If |L + S| < c then there is nothing to prove. Otherwise |L| = |S| = c
 by regularity of c.

- Let t₀ = m₀ and T be a Miller tree. Let T' ⊆ T and G be as in the Lemma. Then for sets A = -G and B = ([T'] + G)^c we have [T'] ⊆ (A + B)^c

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Proof.

- Let L be a generalized Luzin set and S generalized Sierpiński set. If |L + S| < c then there is nothing to prove. Otherwise |L| = |S| = c
 by regularity of c.

- Let t₀ = m₀ and T be a Miller tree. Let T' ⊆ T and G be as in the Lemma. Then for sets A = -G and B = ([T'] + G)^c we have [T'] ⊆ (A + B)^c
- $L + S = (L \cap A) \cup (L \cap A^c) + (S \cap B) \cup (S \cap B^c).$

Let c be a regular cardinal and let $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

Proof.

- Let L be a generalized Luzin set and S generalized Sierpiński set. If |L + S| < c then there is nothing to prove. Otherwise |L| = |S| = c
 by regularity of c.

- Let t₀ = m₀ and T be a Miller tree. Let T' ⊆ T and G be as in the Lemma. Then for sets A = -G and B = ([T'] + G)^c we have [T'] ⊆ (A + B)^c
- $L + S = (L \cap A) \cup (L \cap A^c) + (S \cap B) \cup (S \cap B^c).$
- It follows that $|[T'] \cap L + S| < \mathfrak{c}$, so we may find a Miller tree $T'' \subseteq T'$ for which $T'' \cap (L + S) = \emptyset$.

Thank you for your attention!

A 3 - 5

-